www.ctrt.net > ∫x/1%Cos2x Dx=?

∫x/1%Cos2x Dx=?

∫xcos2xdx =(1/2)∫xdsin2x =(1/2)x.sin2x -(1/2)∫sin2xdx =(1/2)x.sin2x +(1/4)cos2x + C

cos2x=cos²x-sin²x=2cos²x-1=1-2sin²x 所以1-cos2x=1-(1-2sin²x)=2sin²x 原式=∫x/2sin²x dx =1/2*∫x/sin²xdx =1/2*∫xcsc²xdx =-1/2*∫xdcotx =-1/2*xcotx+1/2*∫cotxdx =-1/2xcotx+1/2∫cosx/sinxdx ...

把log改成ln就可以了

实际上x*cosx是一个奇函数, 那么积分之后得到的是偶函数, 所以代入互为相反数的上下限1和-1, 定积分值为0 如果使用分部积分法 ∫ x cos2x dx =∫ x/2 d(sin2x) = x/2 * sin2x - ∫sin2x d(x/2) =x/2 * sin2x - 1/4 *∫sin2x d 2x =x/2 * sin2x +1...

cos2x=2cos^2x-1 所以 1+cos2x=2cos²x

这里就是用来凑微分的办法, 显然求导得到(cos2x)'= -2sin2x 所以就有 d(cos2x)= -2sin2x dx 于是就得到了 ∫ x sin2xdx= -1/2 *∫ xd(cos2x)

∫xcos²xdx=∫x(1+cos2x)/2dx=1/2(∫xdx+∫xcos2xdx) =1/2(1/2x²+∫xcos2xdx) =1/2(1/2x²+1/2∫xdsin2x) =1/2(1/2x²+1/2(xsin2x-∫sin2xdx)) =1/2(1/2x²+1/2xsin2x+1/4cos2x)+C

∫[0→π/2] 2xcos2x dx =∫[0→π/2] x d(sin2x) =xsin2x - ∫[0→π/2] sin2x dx =xsin2x + (1/2)cos2x |[0→π/2] =-(1/2) - (1/2) =-1 希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。

1+cos2x=2(cosx)^2 =∫1/2(cosx)^2 dx =0.5 *∫1/(cosx)^2 dx =0.5tanx +C,C为常数

网站地图

All rights reserved Powered by www.ctrt.net

copyright ©right 2010-2021。
www.ctrt.net内容来自网络,如有侵犯请联系客服。zhit325@qq.com